

Researching health transitions & building research partnerships

Kafui Adjaye-Gbewonyo & Annibale Cois

23 March 2021

University of Greenwich

Outline

- Background and interests
- Project overview
- Establishing our collaboration & applying for the grant

Kafui's Background & Interests

- Trained in public health: doctorate in social & behavioral sciences
- Specific area: Social epidemiology
- Interests:
 - Socio-contextual and structural determinants of health
 - Non-communicable diseases (NCDs) in low- and middle-income countries, esp. Africa region
- Methods:
 - Mostly quantitative (large population surveys, econometrics)
 - Recent qualitative work (focus groups and interviews)

Annibale's background & interests

- Doctorate in Public Health
- Specific area: Epidemiological modelling
- Interests:
 - Epidemiology of NCDs risk factors in LMICs
 - Statistical models for heterogenous data sources
 - Measurement and other sources of error in population surveys
- Methods:
 - Structural Equation Modelling
 - Bayesian multilevel modelling

Project overview: Explaining population trends in cardiovascular risk: A comparative analysis of health transitions in South Africa and England

Project overview

The project is funded by the ESRC Secondary Data Analysis Initiative:

Research Team:

- Kafui Adjaye-Gbewonyo, University of Greenwich
- Dr Annibale Cois, Stellenbosch University/South African Medical Research Council

Research questions

- 1. What are the population trends in CVD risk in South Africa since its first national health survey in 1998?
- 2. To what extent are these trends explained by demographic, behavioural, social, environmental, health-related and/or other factors?
- 3. How do these results compare to those in a high-income country with a different infectious disease profile such as England over the same time period?

Methods

Quantitative research study

Sample & data sources:

11 Nationally-representative cross-sectional surveys from South Africa 1998 through 2017 (DHS, NIDS, SAGE, SANHANES)

8

Health Surveys for England, 1998-2017

South African Surveys				England Surveys			
Survey	Year	Adult Ages	Sample Size	Survey	Year	Adult Ages	Sample Size
DHS	1998	15+	13,827	HSE	1998	16+	15,908
				HSE	1999	16+	14,642
				HSE	2000	16+	10,481
				HSE	2001	16+	15,647
				HSE	2002	16+	10,330
DHS	2003	15+	8,115	HSE	2003	16+	14,836
				HSE	2004	16+	13,520
				HSE	2005	16+	10,303
				HSE	2006	16+	14,142
SAGE	2007-8	18+	4,223	HSE	2007	16+	6,882
NIDS	2008	15+	16,872	HSE	2008	16+	15,098
				HSE	2009	16+	4,645
NIDS	2010-11	15+	21,874	HSE	2010	16+	8,420
NIDS	2012	15+	22,457	HSE	2011	16+	8,610
SANHANES	2012	15+	7,436 ^a	HSE	2012	16+	8,290
NIDS	2014-15	15+	22,741	HSE	2013	16+	8,795
SAGE	2014-15	18+	26,804	HSE	2014	16+	8,077
				HSE	2015	16+	8,034
DHS	2016	15+	5,685	HSE	2016	16+	8,011
NIDS	2017	15+	30,109	HSE	2017	16+ 9	7,997

Analysis

- Examine population trends in CVD risk using nonlaboratory based CVD risk score (blood pressure, BMI, smoking status, hypertension treatment, diabetes diagnosis, age, sex)
- Explore potential explanatory variables: demographic, socioeconomic, behavioural, health, healthcare, geographic, environmental and psychosocial variables at multiple levels
- Use econometric and structural equation modelling

Analysis, cntd.

- ▶ The risk score will be calculated by using the following model:
 - CVDrisk
 - $= \beta_1 \cdot \ln(age) + \beta_2 \cdot systolic \ blood \ pressure + \beta_3$
 - \cdot Current smoker + $\beta_4 \cdot$ Diabetes diagnosis + β_5
 - \cdot Hypertension treatment + $\beta_6 \cdot BMI$
- Where CVDrisk represents the risk of developing any cardiovascular disease event in 5-years, and the β coefficients are reported by Gaziano and colleagues (34) and differ between men and women.

Outputs & Impact

- ► Harmonised dataset & code made publicly available
- Stakeholder group
- Policy brief/report
- Public engagement activities and media
- Trainings

Stakeholders, partners & supporters

- Health and Social Surveys Research Group (HSE team), UCL
- Health Systems Trust
- DataFirst
- African Health Research Institute (AHRI) & South African Population Research Infrastructure Network (SAPRIN)
- Health & Social Research Council, SA

Novel Contributions

- Examining trends in total CVD risk in South Africa using a validated risk score in addition to individual risk factors
- Quantifying contributions of various factors to these trends, including psychosocial, environmental and contextual variables, at multiple levels
- Exploring trends over nearly a 20-year period
- Comparative analysis, comparing transitions in English context
- Using innovative structural equation modelling techniques to account for variation across surveys

Establishing our collaboration & applying for the grant

Timeline

September 2018: First connected & began developing project idea

- June 2019: Began working on the proposal for SDAI
- September 2019: In person meeting in South Africa
- March 2020: Submission of application
- July 2020: Peer reviewer feedback
- December 2020: Notification of award

Questions?